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Abstract

Background: Taxonomic classification of marker-gene sequences is an important step in microbiome analysis.

Results: We present q2-feature-classifier (https://github.com/qiime2/q2-feature-classifier), a QIIME 2 plugin
containing several novel machine-learning and alignment-based methods for taxonomy classification. We evaluated
and optimized several commonly used classification methods implemented in QIIME 1 (RDP, BLAST, UCLUST, and
SortMeRNA) and several new methods implemented in QIIME 2 (a scikit-learn naive Bayes machine-learning
classifier, and alignment-based taxonomy consensus methods based on VSEARCH, and BLAST+) for classification of
bacterial 16S rRNA and fungal ITS marker-gene amplicon sequence data. The naive-Bayes, BLAST+-based, and
VSEARCH-based classifiers implemented in QIIME 2 meet or exceed the species-level accuracy of other commonly
used methods designed for classification of marker gene sequences that were evaluated in this work. These
evaluations, based on 19 mock communities and error-free sequence simulations, including classification of
simulated “novel” marker-gene sequences, are available in our extensible benchmarking framework, tax-credit
(https://github.com/caporaso-lab/tax-credit-data).

Conclusions: Our results illustrate the importance of parameter tuning for optimizing classifier performance, and we
make recommendations regarding parameter choices for these classifiers under a range of standard operating
conditions. q2-feature-classifier and tax-credit are both free, open-source, BSD-licensed packages available on GitHub.

Background
High-throughput sequencing technologies have trans-
formed our ability to explore complex microbial com-
munities, offering insight into microbial impacts on
human health [1] and global ecosystems [2]. This is
achieved most commonly by sequencing short, con-
served marker genes amplified with ‘universal’ PCR
primers, such as 16S rRNA genes for bacteria and ar-
chaea, or internal transcribed spacer (ITS) regions for
fungi. Targeted marker-gene primers can also be used to
profile specific taxa or functional groups, such as nifH

genes [3]. These sequences often are compared against
an annotated reference sequence database to determine
the likely taxonomic origin of each sequence with as
much specificity as possible. Accurate and specific taxo-
nomic information is a crucial component of many ex-
perimental designs.
Challenges in this process include the short length of

typical sequencing reads with current technology, sequen-
cing and PCR errors [4], selection of appropriate marker
genes that contain sufficient heterogeneity to differenti-
ate target species but that are homogeneous enough in
some regions to design broad-spectrum primers, quality
of reference sequence annotations [5], and selection of
a method that accurately predicts the taxonomic affili-
ation of millions of sequences at low computational
cost. Numerous methods have been developed for tax-
onomy classification of DNA sequences, but few have
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been directly compared in the specific case of short
marker-gene sequences.
We introduce q2-feature-classifier, a QIIME 2 (https://

qiime2.org) plugin for taxonomy classification of
marker-gene sequences. QIIME 2 is the successor to the
QIIME [6] microbiome analysis package. The q2-
feature-classifier plugin supports use of any of the
numerous machine-learning classifiers available in scikit-
learn [7, 8] for marker gene taxonomy classification, and
currently provides two alignment-based taxonomy con-
sensus classifiers based on BLAST+ [9] and VSEARCH
[10]. We evaluate the latter two methods and the scikit-
learn multinomial naive Bayes classifier (labeled “naive
Bayes” in the “Results” section) for the first time. We
show that the QIIME 2 classifiers provided in q2-
feature-classifier match or outperform the classification
accuracy of the widely used QIIME 1 methods for se-
quence classification, and that performance of the naive
Bayes classifier can be significantly increased by provid-
ing it with information regarding expected taxonomic
composition. Some of the taxonomy classification
methods in QIIME 1 (RDP classifier [11] and BLAST
[9]) are thin wrappers around the original software;
other methods based on uclust [12] SortMeRNA
[13](QIIME 1), VSEARCH, and BLAST+ (QIIME 2) are
also wrapped implementations of other software
followed by consensus taxonomic assignment by QIIME
software. Thus, while our analyses focus on methods
currently implemented in these versions of QIIME, we
expect that the results will generalize to similar applica-
tions of those tools outside of QIIME.
We also developed tax-credit (https://github.com/

caporaso-lab/tax-credit-code/ and https://github.com/
caporaso-lab/tax-credit-data/), an extensible computa-
tional framework for evaluating taxonomy classification
accuracy. This framework streamlines the process of
methods benchmarking by compiling multiple different
test data sets, including mock communities [14] and simu-
lated sequence reads. It additionally stores pre-computed
results from previously evaluated methods, including the
results presented here, and provides a framework for par-
ameter sweeps and method optimization. Tax-credit could
be used as an evaluation framework by other research
groups in the future or its raw data could be easily ex-
tracted for integration in another evaluation framework.

Results
We used tax-credit to optimize and compare multiple
marker-gene sequence taxonomy classifiers. We evalu-
ated two commonly used classifiers that are wrapped in
QIIME 1 (RDP Classifier (version 2.2) [11], legacy BLAST
(version 2.2.22) [15]), two QIIME 1 alignment-based con-
sensus taxonomy classifiers (the default UCLUST classifier
available in QIIME 1 (based on version 1.2.22q) [12], and

SortMeRNA (version 2.0 29/11/2014) [13]), two alignment-
based consensus taxonomy classifiers newly released in q2-
feature-classifier (based on BLAST+ (version 2.6.0) [9] and
VSEARCH (version 2.0.3) [10]), and a new multinomial
naive Bayes machine-learning classifier in q2-feature-
classifier (see the “Methods” section for information about
q2-feature-classifier methods and source code availability).
We performed parameter sweeps to determine optimal par-
ameter configurations for each method.

Mock community evaluations
We first benchmarked classifier performance on mock
communities, which are artificially constructed mixtures
of microbial cells or DNA combined at known ratios
[14]. We utilized 15 bacterial 16S rRNA gene mock
communities and 4 fungal internal transcribed spacer
(ITS) mock communities (Table 1) sourced from mock-
robiota [14], a public repository for mock community
data. Mock communities are useful for method bench-
marking because (1) unlike for simulated communities,
they allow quantitative assessments of method perform-
ance under actual operating conditions, i.e., incorporating
real sequencing errors that can be difficult to model ac-
curately; and (2) unlike for natural community samples,
the actual composition of a mock community is known in

Table 1 Mock communities currently integrated in tax-credit

Study IDa Target geneb Platform Species Strains Citation

mock-1 16S HiSeq 46 48 [33]

mock-2 16S MiSeq 46 48 [33]

mock-3 16S MiSeq 21 21 [33]

mock-4 16S MiSeq 21 21 [33]

mock-5 16S MiSeq 21 21 [33]

mock-7 16S HiSeq 67 67 [34]

mock-8 16S HiSeq 67 67 [14]

mock-9 ITS HiSeq 13 16 [14]

mock-10 ITS HiSeq 13 16 [14]

mock-12 16S MiSeq 26 27 [4]

mock-16 16S MiSeq 56 59 [35]

mock-18 16S MiSeq 15 15 [36]

mock-19 16S MiSeq 15 27 [36]

mock-20 16S MiSeq 20 20 [37]

mock-21 16S MiSeq 20 20 [37]

mock-22 16S MiSeq 20 20 [37]

mock-23 16S MiSeq 20 20 [37]

mock-24 ITS MiSeq 8 8 [38]

mock-26 ITS FLX Titanium 11 11 [39]
aAll studies are available on mockrobiota [14]
at https://github.com/caporaso-lab/mockrobiota/tree/master/data/[studyID]
bAbbreviations: 16S, 16S rRNA gene; HiSeq, Illumina HiSeq; MiSeq,
Illumina MiSeq
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advance, allowing quantitative assessments of community
profiling accuracy.
An additional priority was to test the effect of setting

class weights on classification accuracy for the naive
Bayes classifier implemented in q2-feature-classifier. In
machine learning, class weights or prior probabilities are
vectors of weights that specify the frequency at which
each class is expected to be observed (and should be dis-
tinguished from the use of this term under Bayesian in-
ference as a probability distribution of weights vectors).
An alternative to setting class weights is to assume that
each query sequence is equally likely to belong to any of
the taxa that are present in the reference sequence data-
base. This assumption, known as uniform class priors in
the context of a naive Bayes classifier, is made by the
RDP classifier [11], and its impact on marker-gene clas-
sification accuracy has yet to be validated. Making either
assumption that the class weights are uniform or known
to some extent will affect results and cannot be avoided.
The mock communities have taxonomic abundances
that are far from uniform over the set of reference tax-
onomies, as any real data set must. We can therefore
use them to assess the impact of making assumptions
regarding class weights. Where we have set the class
weights to the known taxonomic composition of a sam-
ple, we have labeled the results “bespoke”.
We evaluated classifier performance accuracy on mock

community sequences classified at taxonomic levels
from class through species. Mock community sequences
were classified using the Greengenes 99% OTUs 16S
rRNA gene or UNITE 99% OTUs ITS reference sequences
for bacterial and fungal mock communities, respectively.
As expected, classification accuracy decreased as classifi-
cation depth increased, and all methods could predict the
taxonomic affiliation of mock community sequences down
to genus level with median F-measures exceeding 0.8
across all parameter sets (minimum: UCLUST F = 0.81,
maximum: naive Bayes bespoke F = 1.00) (Fig. 1a).
However, species affiliation was predicted with much
lower and more variable accuracy among method configu-
rations (median F-measure minimum: UCLUST F = 0.42,
maximum: naive Bayes bespoke F = 0.95), highlighting the
importance of parameter optimization (discussed in
more detail below). Figure 1a illustrates line plots of
mean F-measure at each taxonomic level, averaged
across all classifier configurations; hence, classifier
performance is underestimated for some classifiers
that are strongly affected by parameter configurations
or for which a wider range of parameters were tested (e.g.,
naive Bayes). Comparing only optimized methods (i.e.,
the top-performing parameter configurations for each
method), naive Bayes bespoke achieved significantly
higher F-measure (paired t test P < 0.05) (Fig. 1b), re-
call, taxon detection rate, taxon accuracy rate (Fig. 1c),

and lower Bray-Curtis dissimilarity than all other
methods (Fig. 1d).
Mock communities are necessarily simplistic, and can-

not assess method performance across a diverse range of
taxa. Although raw sequences may contain PCR and se-
quencing errors (allowing us to assess method perform-
ance under biological conditions), sequences that do
match the expected mock community sequences are not
removed from the reference database prior to classifica-
tion. This approach replicates normal operating condi-
tions and assesses recovery of expected sequences, but
may implicitly bias toward methods that find an exact
match to the query sequences, and does not approxi-
mate some natural microbial communities in which few
or no detected sequences exactly match the reference se-
quences. Hence, we performed simulated sequence read
classifications (described below) to further test classifier
performance.

Cross-validated taxonomy classification
Simulated sequence reads, derived from reference data-
bases, allow us to assess method performance across a
greater diversity of sequences than a single mock com-
munity generally encompasses. We first evaluated classi-
fier performance using stratified k-fold cross-validation
of taxonomy classification for simulated reads. The k-
fold cross-validation strategy is modified slightly to ac-
count for the hierarchical nature of taxonomic classifica-
tions, which all of the classifiers in this study (with
the exception of legacy BLAST) handle by assigning
the lowest (i.e., most specific) taxonomic level where
the classification surpasses some user-defined “confi-
dence” or “consensus” threshold (see materials and
methods). The modification is to truncate any expected
taxonomy in each test set to the maximum level at which
an instance of that taxonomy exists in the training set.
Simulated reads were generated from Greengenes 99%

OTUs 16S rRNA gene or UNITE 99% OTUs ITS refer-
ence sequences. Greengenes 16S rRNA gene simulated
reads were generated from full-length 16S rRNA genes
(primers 27F/1492R) and V4 (primers 515F/806R) and
V1–3 subdomains (primers 27F/534R). The simulated
reads currently available in tax-credit do not incorporate
artificial errors from PCR or sequencing for several rea-
sons. As our mock communities analyses already assess
classifier performance under true noisy experimental
conditions, the goal of the analyses of simulated se-
quences is to assess theoretical classifier performance
(when exact sequence matches do not exist in the refer-
ence database). Additionally, marker-gene amplicon se-
quence analysis pipelines commonly utilize denoising
methods [4] to model per-run error profiles, filter noisy
sequences, and resolve actual sequence variants. Hence,
in our evaluations, we simulate an idealized (if unlikely)
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theoretical scenario in which all sequencing errors have
been denoised in order to separate classifier perform-
ance from denoiser performance. In this set of tests and
below for novel taxa, the “bespoke” classifier had prior
probabilities that were inferred from the training set
each time it was trained.
Classification of cross-validated reads performed better

at coarser levels of classification (Fig. 2a), similar to the
trend observed in mock community results. For bacterial
sequences, average classification accuracy for all methods
declined from near-perfect scores at family level (V4 do-
main median F-measure minimum: BLAST+ F = 0.92,
maximum: legacy BLAST F = 0.99), but still retained ac-
curate scores at species level (median minimum: BLAST+
F = 0.76, maximum: SortMeRNA F = 0.84), relative to
some mock community data sets (Fig. 2a). Fungal se-
quences exhibited similar performance, with the exception
that mean BLAST+ and VSEARCH performance was
markedly lower at all taxonomic levels, indicating high
sensitivity to parameter configurations, and species-level
F-measures were in general much lower (median mini-
mum: BLAST+ F = 0.17, maximum: UCLUST F = 0.45)
than those of bacterial sequence classifications (Fig. 2a).
Species-level classifications of 16S rRNA gene simu-

lated sequences were best with optimized UCLUST and
SortMeRNA configurations for V4 domain, and naive
Bayes and RDP for V1–3 domain and full-length 16S
rRNA gene sequences (Fig. 2b). UCLUST achieved the
highest F-measure for ITS classification (F = 0.51). How-
ever, all optimized classifiers achieved similar F-measure
ranges, with the exception of legacy BLAST for ITS se-
quences (Fig. 2b).
Species-level classification performance of 16S rRNA

gene simulated reads was significantly correlated be-
tween each subdomain and the full-length gene se-
quences (Fig. 2c). In our tests, full-length sequences
exhibited slightly lower accuracy than V1–3 and V4 sub-
domains. The relative performance of full-length 16S
rRNA genes versus hypervariable subdomain reads is

Fig. 1 Classifier performance on mock community datasets for 16S
rRNA gene sequences (left column) and fungal ITS sequences (right
column). a Average F-measure for each taxonomy classification
method (averaged across all configurations and all mock community
datasets) from class to species level. Error bars = 95% confidence intervals.
b Average F-measure for each optimized classifier (averaged across all
mock communities) at species level. c Average taxon accuracy rate for
each optimized classifier (averaged across all mock communities)
at species level. d Average Bray-Curtis distance between the expected
mock community composition and its composition as predicted by
each optimized classifier (averaged across all mock communities) at
species level. Violin plots show median (white point), quartiles (black
bars), and kernel density estimation (violin) for each score distribution.
Violins with different lower-case letters have significantly different
means (paired t test false detection rate-corrected P < 0.05)
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variable in the literature [11, 16–21], and our results add
another data point to the ongoing discussion of this
topic. Nevertheless, species-level classifications yielded
strong correlation between method configurations
(Fig. 2c) and optimized method performance (Fig. 2b),
suggesting that primer choice impacts classification accur-
acy uniformly across all methods. Hence, we focused on
V4 subdomain reads for downstream analyses.

Novel taxon classification evaluation
Novel taxon classification offers a unique perspective on
classifier behavior, assessing how classifiers perform
when challenged with a “novel” clade that is not rep-
resented in the reference database [22–25]. An ideal
classifier should identify the nearest taxonomic
lineage to which this taxon belongs, but no further.
In this evaluation, a reference database is subsampled
k times to generate query and reference sequence
sets, as for cross-validated classification, but two im-
portant distinctions exist: (1) the reference database
used for classification excludes any sequence that
matches the taxonomic affiliation of the query se-
quences at taxonomic level L, the taxonomic rank at
which classification is being attempted; and (2) this is
performed at each taxonomic level, in order to assess
classification performance when each method encoun-
ters a “novel” species, genus, family, etc.
Due to these differences, interpretation of novel taxon

classification results is different from that of mock
community and cross-validated classifications. For the
latter, classification accuracy may be assessed at each
taxonomic level for each classification result: mean
classification accuracy at family level and species level
evaluate the same results but focus on different taxo-
nomic levels of classification. For novel taxa, however,
different query and reference sequences are compiled
for classification at each taxonomic level and separate
classifications are performed for each. Hence, classifi-
cations at family and species level are independent

Fig. 2 Classifier performance on cross-validated sequence datasets.
Classification accuracy of 16S rRNA gene V4 subdomain (first row),
V1–3 subdomain (second row), full-length 16S rRNA gene (third tow),
and fungal ITS sequences (fourth row). a Average F-measure for each
taxonomy classification method (averaged across all configurations
and all cross-validated sequence datasets) from class to species
level. Error bars = 95% confidence intervals. b Average F-measure for
each optimized classifier (averaged across all cross-validated sequence
datasets) at species level. Violins with different lower-case letters have
significantly different means (paired t-test false detection rate-corrected
P < 0.05). c correlation between F-measure performance for each
method/configuration classification of V4 subdomain (x axis), V1–3
subdomain (y axis), and full-length 16S rRNA gene sequences (z axis).
Inset lists the Pearson R2 value for each pairwise correlation; each
correlation is significant (P < 0.001)
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events—one assesses how accurately each method per-
forms when it encounters a “novel” family that is not rep-
resented in the reference database, the other when a
“novel” species is encountered.
Novel taxon evaluations employ a suite of modified

metrics to provide more information on what types of
classification errors occur. Precision, recall, and F-
measure calculations at each taxonomic level L assess
whether an accurate taxonomy classification was made
at level L-1: for example, a “novel” species should be
assigned a genus, because the correct species class is not
represented within the reference database. Any species-
level classification in this scenario is an overclassification
(affecting both recall and precision) [25]. Overclassifica-
tion is one of the key metrics for novel taxa evaluation,
indicating the degree to which novel sequences will be
misinterpreted as known organisms. This overclassifica-
tion is often highly undesirable because it can lead, for
example, to the incorrect classification of unknown but
most likely innocuous environmental sequences as
known pathogens. Novel sequences that are classified
within the correct clade, but to a less specific level
than L, are underclassified (affecting recall but not
precision) [25]. Sequences that are classified into a
completely different clade are misclassified (affecting
both recall and precision) [25].
Precision, recall, and F-measure all gradually increase

from average scores near 0.0 at class level, reaching peak
scores at genus level for bacteria and species level for
fungi (Fig. 3a–c). These trends are paired with gradual
decreases in underclassification and misclassification
rates for all classification methods, indicating that all
classifiers perform poorly when they encounter se-
quences with no known match at the class, order, or
family levels (Fig. 3d, f ). At species level, UCLUST,
BLAST+, and VSEARCH achieved significantly better F-
measures than all other methods for 16S rRNA gene
classifications (P < 0.05) (Fig. 3g). UCLUST achieved sig-
nificantly better F-measures than all other methods for
ITS classifications (Fig. 3g). Over-, under-, and misclassi-
fication scores are less informative for optimizing classi-
fiers for real use cases, as most methods could be
optimized to yield near-zero scores for each of these
metrics separately, but only through extreme configura-
tions, leading to F-measures that would be unacceptable
under any scenario. Note that all comparisons were
made between methods optimized to maximize (or
minimize) a single metric, and hence the configurations
that maximize precision are frequently different from
those that maximize recall or other metrics. This trade-
off between different metrics is discussed in more
detail below.
The novel taxon evaluation provides an estimate

of classifier performance given a specific reference

database, but its generalization is limited by the
quality of the reference databases available and by the
label-based approach used for partitioning and evalu-
ation. Mislabeled and polyphyletic clades in the database,
e.g., clostridium group, increase the probability of mis-
classification. A complementary analysis based on se-
quence similarity between a novel query and top reference
hit could mitigate this issue. However, we choose to apply
a label-based approach, as it better reflects the biological
problem that users can expect to encounter, i.e., using a
particular reference sequence database (which will contain
some quantity of mislabeled and polyphyletic taxa inher-
ent to currently available resources), how likely is a classi-
fier to misclassify a taxonomic label?

Multi-evaluation method optimization
The mock community and cross-validation classification
evaluations yielded similar trends in configuration per-
formance, but optimizing parameters choices for the
novel taxa generally led to suboptimal choices for the
mock community and cross-validation tests (Fig. 4). We
sought to determine the relationship between method
configuration performance for each evaluation and use
this information to select configurations that perform
best across all evaluations. For 16S rRNA gene sequence
species-level classification, method configurations that
achieve maximum F-measures for mock and cross-
validated sequences can perform poorly for novel taxon
classification (Fig. 4b). Optimization is more straightfor-
ward for genus-level classification of 16S rRNA gene se-
quences (Fig. 4a) and for fungal sequences (Fig. 4c, d),
for which configuration performance (measured as mean
F-measure) is maximized by similar configurations
among all three evaluations.
To identify optimal method configurations, we set

accuracy score minimum thresholds for each evalu-
ation by identifying natural breaks in the range of
quality scores, selecting methods and parameter ranges
that met these criteria. Table 2 lists method configurations
that maximize species-level classification accuracy scores
for mock community, cross-validated, and novel taxon
evaluations under several common operating conditions.
“Balanced” configurations are recommended for general
use and are methods that maximize F-measure scores.
“Precision” and “recall” configurations maximize precision
and recall scores, respectively, for mock, cross-validated,
and novel-taxa classifications (Table 2). “Novel” configura-
tions optimize F-measure scores for novel taxon classifica-
tion, and secondarily for mock and cross-validated
performance (Table 2). These configurations are recom-
mended for use with sample types that are expected to
contain large proportions of unidentified species, for
which overclassification can be excessive. However,
these configurations may not perform optimally for
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classification of known species (i.e., underclassification
rates will be higher). For fungi, the same configura-
tions recommended for “precision” perform well for
novel taxon classification (Table 2). For 16S rRNA
gene sequences, BLAST+, UCLUST, and VSEARCH
consensus classifiers perform best for novel taxon
classification (Table 2).

Computational runtime
High-throughput sequencing platforms (and experiments)
continue to yield increasing sequence counts, which—
even after quality filtering and dereplication or operational
taxonomic unit clustering steps common to most micro-
biome analysis pipelines—may exceed thousands of
unique sequences that need classification. Increasing
numbers of query sequences and references sequences
may lead to unacceptable runtimes, and under some ex-
perimental conditions, the top-performing method (based
on precision, recall, or some other metric) may be insuffi-
cient to handle large numbers of sequences within an ac-
ceptable time frame. For example, quick turnarounds may
be vital under clinical scenarios as microbiome evaluation
becomes translated to clinical practice, or commercial sce-
narios, when large sample volumes and client expectations
may constrain turnaround times and method selection.
We assessed computational runtime as a linear func-

tion of (1) the number of query sequences and (2) the
number of reference sequences. Linear dependence is
empirically evident in Fig. 5. For both of these metrics,
the slope is the most important measure of performance.
The intercept may include the amount of time taken to
train the classifier, preprocess the reference sequences,
load preprocessed data, or other “setup” steps that will
diminish in significance as sequence counts grow, and
hence is negligible.
UCLUST (0.000028 s/sequence), VSEARCH (0.000072 s/

sequence), BLAST+ (0.000080 s/sequence), and legacy
BLAST (0.000100 s/sequence) all exhibit shallow slopes
with increasing numbers of reference sequences. Naive
Bayes (0.000483 s/sequence) and SortMeRNA (0.000543 s/
sequence) yield moderately higher slopes and RDP
(0.001696 s/sequence) demonstrates the steepest slope
(Fig. 5b). For runtime as a function of query sequence
count, UCLUST (0.002248 s/sequence), RDP (0.002920 s/

Fig. 3 Classifier performance on novel-taxa simulated sequence
datasets for 16S rRNA gene sequences (left column) and fungal ITS
sequences (right column). a–f, Average F-measure (a), precision (b), recall
(c), overclassification (d), underclassification (e), and misclassification (f) for
each taxonomy classification method (averaged across all configurations
and all novel taxa sequence datasets) from phylum to species level.
Error bars = 95% confidence intervals. b Average F-measure for each
optimized classifier (averaged across all novel taxa sequence datasets) at
species level. Violins with different lower-case letters have significantly
different means (paired t test false detection rate-corrected P < 0.05)
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sequence), and SortMeRNA (0.003819 s/sequence) have
relatively shallow slopes (Fig. 5a). Naive Bayes (0.022984 s/
sequence), BLAST+ (0.026222 s/sequence), and VSEARCH
(0.030190 s/sequence) exhibit greater slopes. Legacy BLAST
(0.133292 s/sequence) yielded a slope magnitudes higher
than other methods, rendering this method impractical
for large data sets.

Discussion
We have developed and validated several machine-
learning and alignment-based classifiers provided in q2-
feature-classifier and benchmarked these classifiers, as
well as other common classification methods, to evaluate
their strengths and weaknesses for marker-gene ampli-
con sequence classification across a range of parameter
settings for each (Table 2).
Each classifier required some degree of optimization

to define top-performing parameter configurations, with
the sole exception of QIIME 1’s legacy BLAST wrapper,
which was unaffected by its only user-defined parameter,
e-value, over a range of 10− 10 to 1000. For all other
methods, performance varied widely depending on
parameter settings, and a single method could achieve
among the worst performance with one configuration but
among the best performance with another. Configurations
greatly affected accuracy with mock community, cross-
validated, and novel taxon evaluations, indicating that

optimization is necessary under a variety of performance
conditions, and optimization for one condition may not
necessarily translate to another. Mock community and
cross-validated evaluations exhibited similar results, but
novel taxon evaluations selected different optimal con-
figurations for most methods (Fig. 4), indicating that
configurations optimized to one condition, e.g., high-
recall classification of known sequences, may be less
suited for other conditions, e.g., classification of novel
sequences. Table 2 lists the top-performing configur-
ation for each method for several standard performance
conditions.
Optimal configurations also varied among different evalu-

ation metrics. Precision and recall, in particular, exhibited
some mutual opposition, such that methods increasing
precision reduced recall. For this reason, F-measure,
the harmonic mean of precision and recall, is a useful
metric for choosing configurations that are well
balanced for average performance. “Balanced” method
configurations—which maximize F-measure scores for
mock, cross-validated, and novel taxon evaluations
(Table 2)—are best suited for a wide range of user con-
ditions. The naive Bayes classifier with k-mer lengths of
6 or 7 and confidence = 0.7 (or confidence ≥ 0.9 if using
bespoke class weights), RDP with confidence = 0.6–0.7,
and UCLUST (minimum consensus = 0.51, minimum
similarity = 0.9, max accepts = 3) perform best under

Fig. 4 Classification accuracy comparison between mock community, cross-validated, and novel taxa evaluations. Scatterplots show mean F-measure
scores for each method configuration, averaged across all samples, for classification of 16S rRNA genes at genus level (a) and species
level (b), and fungal ITS sequences at genus level (c) and species level (d)
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Table 2 Optimized methods configurations for standard operating conditions

Mock Cross-validated Novel taxa

Target Condition Method Parameters F P R F P R F P R Threshold

16S rRNA gene Balanced NB-bespoke [6,6]:0.9 0.705 0.98 0.582 0.827 0.931 0.744 0.165 0.243 0.125 F = (0.49, 0.8, 0.1)

[6,6]:0.92 0.705 0.98 0.581 0.825 0.936 0.737 0.165 0.251 0.123 F = (0.7, 0.8, 0.15)

[6,6]:0.94 0.703 0.98 0.579 0.822 0.942 0.729 0.162 0.259 0.118

[7,7]:0.92 0.712 0.978 0.592 0.831 0.931 0.751 0.151 0.221 0.115

[7,7]:0.94 0.708 0.978 0.586 0.829 0.936 0.743 0.157 0.239 0.117

Naive-Bayes [7,7]:0.7 0.495 0.797 0.38 0.819 0.886 0.761 0.115 0.138 0.099

rdp 0.6 0.564 0.798 0.457 0.815 0.868 0.768 0.102 0.128 0.084

0.7 0.55 0.799 0.438 0.812 0.892 0.746 0.124 0.173 0.096

Uclust 0.51:0.9:3 0.498 0.746 0.392 0.846 0.876 0.817 0.154 0.201 0.126

Precision NB-bespoke [6,6]:0.98 0.676 0.987 0.537 0.803 0.956 0.692 0.163 0.303 0.111 P = (0.94, 0.95, 0.25)

[7,7]:0.98 0.687 0.98 0.551 0.815 0.951 0.713 0.164 0.283 0.115

rdp 1 0.239 0.941 0.16 0.632 0.968 0.469 0.12 0.457 0.069

Recall NB-bespoke [12,12]:0.5 0.754 0.8 0.721 0.815 0.83 0.801 0.053 0.058 0.049 R = (0.47, 0.75, 0.04)

[14,14]:0.5 0.758 0.802 0.726 0.811 0.826 0.797 0.052 0.057 0.048 R = (0.7, 0.75, 0.04)

[16,16]:0.5 0.755 0.785 0.732 0.808 0.825 0.792 0.052 0.058 0.047

[18,18]:0.5 0.772 0.803 0.748 0.805 0.823 0.789 0.055 0.061 0.05

[32,32]:0.5 0.937 0.966 0.913 0.788 0.818 0.76 0.054 0.067 0.045

Naive-Bayes [11,11]:0.5 0.567 0.77 0.479 0.793 0.82 0.768 0.059 0.065 0.055

[12,12]:0.5 0.567 0.769 0.479 0.79 0.816 0.765 0.059 0.064 0.055

[18,18]:0.5 0.564 0.764 0.477 0.779 0.807 0.753 0.057 0.063 0.051

rdp 0.5 0.577 0.791 0.48 0.816 0.848 0.787 0.068 0.079 0.06

Novel Blast+ 10:0.51:0.8 0.436 0.723 0.325 0.816 0.896 0.749 0.225 0.332 0.171 F = (0.4, 0.8, 0.2)

Uclust 0.76:0.9:5 0.467 0.775 0.348 0.84 0.938 0.76 0.219 0.358 0.158

VSEARCH 10:0.51:0.8 0.45 0.74 0.342 0.814 0.891 0.75 0.226 0.333 0.171

10:0.51:0.9 0.45 0.74 0.342 0.82 0.896 0.755 0.219 0.338 0.162

Fungi Balanced Naive-Bayes [6,6]:0.94 0.874 0.935 0.827 0.481 0.57 0.416 0.374 0.438 0.327 F = (0.85, 0.45, 0.37)

[6,6]:0.96 0.874 0.935 0.827 0.495 0.597 0.423 0.399 0.473 0.344

[6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361

[7,7]:0.98 0.874 0.935 0.827 0.485 0.596 0.409 0.388 0.47 0.33

NB-bespoke [6,6]:0.94 0.928 0.968 0.915 0.48 0.567 0.416 0.371 0.433 0.325

[6,6]:0.96 0.928 0.968 0.915 0.491 0.59 0.42 0.393 0.466 0.34

[6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358

[7,7]:0.98 0.935 0.97 0.921 0.487 0.596 0.412 0.386 0.466 0.329

rdp 0.7 0.929 0.939 0.922 0.479 0.572 0.413 0.382 0.451 0.332

0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366

0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379

Precision Naive-Bayes [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361 P = (0.92, 0.6, 0.3)

NB-bespoke [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358

rdp 0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366

0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379

1 0.821 0.943 0.742 0.461 0.81 0.322 0.459 0.774 0.327

Recall NB-bespoke [6,6]:0.92 0.938 0.971 0.924 0.467 0.544 0.409 0.353 0.407 0.312 R = (0.9, 0.4, 0.3)

[6,6]:0.94 0.928 0.968 0.915 0.48 0.567 0.416 0.371 0.433 0.325
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these conditions (Table 2). Performance is dramatically
improved using bespoke class weights for 16S rRNA
sequences (Fig. 4a, b), though this approach is develop-
mental and only applicable when the expected compos-
ition of samples is known in advance (a scenario that is
becoming increasingly common with the increasing
quantity of public microbiome data, and which could
be aided by microbiome data sharing resources such as
Qiita (http://qiita.microbio.me)). For ITS sequences, the
naive Bayes classifier with k-mer lengths of 6 or 7 and
confidence ≥ 0.9, or RDP with confidence = 0.7–0.9, per-
form best, and the effects of bespoke class weights are less
pronounced (Fig. 4c, d).

However, some users may require high-precision
classifiers when false-positives may be more damaging to
the outcome, e.g., for detection of pathogens in a sam-
ple. Precision scores are maximized by naive Bayes and
RDP classifiers with high confidence settings (Table 2).
Optimizing for precision will significantly damage re-
call by yielding a high number of false negatives.
Other users may require high-recall classifiers when false-

negatives and underclassification hinder interpretation, but
false positives (mostly overclassification to a closely related
species) are less damaging. For example, in environments
with high numbers of unidentified species, a high-precision
classifier may yield large numbers of unclassified sequences;

Fig. 5 Runtime performance comparison of taxonomy classifiers. Runtime (s) for each taxonomy classifier either varying the number of query
sequences and keeping a constant 10,000 reference sequences (a) or varying the number of reference sequences and keeping a constant 1
query sequence (b)

Table 2 Optimized methods configurations for standard operating conditions (Continued)

Mock Cross-validated Novel taxa

Target Condition Method Parameters F P R F P R F P R Threshold

[6,6]:0.96 0.928 0.968 0.915 0.491 0.59 0.42 0.393 0.466 0.34

[6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358

[7,7]:0.96 0.935 0.969 0.921 0.47 0.56 0.404 0.357 0.422 0.31

[7,7]:0.98 0.935 0.97 0.921 0.487 0.596 0.412 0.386 0.466 0.329

rdp 0.7 0.929 0.939 0.922 0.479 0.572 0.413 0.382 0.451 0.332

0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366

0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379

Novel Naive-Bayes [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361 F = (0.85, 0.45, 0.4)

NB-bespoke [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358

rdp 0.8 0.923 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366

0.9 0.921 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379
aF, F-measure; P, precision; R, recall
bNaive Bayes parameters: k-mer range, confidence
cRDP parameters: confidence
dBLAST+/VSEARCH parameters: max accepts, minimum consensus, minimum percent identity
eUCLUST parameters: minimum consensus, similarity, max accepts
fThreshold describes the score cut-offs used to define optimal method ranges, in the following format: [metric = (mock score, cross-validated score, novel-taxa score)]. If
two cut-offs are given, the second indicates a higher cut-off used to select parameters for the developmental NB-bespoke method, and the configurations listed are the
union of the two cutoffs: the second cutoff for selecting NB-bespoke, the first for selecting all other methods
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in such cases, a second pass with a high-recall configuration
(Table 2) may provide useful inference of what taxa are
most similar to these unclassified sequences. When recall is
optimized, precision tends to suffer slightly (leading to simi-
lar F-measure scores to “balanced” configurations) but
novel taxon classification accuracy is minimized, as these
configurations tend to overclassify (Table 2). Any user pri-
oritizing recall ought to be aware of and acknowledge these
risks, e.g., when sharing or publishing their results, and
understand that many of the species-level classifications
may be wrong, particularly if the samples are expected to
contain many uncharacterized species. For 16S rRNA gene
sequences, naive Bayes bespoke classifiers with k-mer
lengths between 12 and 32 and confidence = 0.5 yield max-
imal recall scores, but RDP (confidence = 0.5) and naive
Bayes (uniform class weights, confidence = 0.5, k-mer
length = 11, 12, or 18) also perform well (Table 2). Fungal
recall scores are maximized by the same configurations rec-
ommended for “balanced” classification, i.e., naive Bayes
classifiers with k-mer lengths of 6 or 7 and confidence be-
tween 0.92 and 0.98 or RDP with confidence between 0.7
and 0.9 (Table 2).
Runtime requirements may also be the chief concern

dictating method selection for some users. QIIME 1’s
UCLUST wrapper provides the fastest runtime while still
achieving reasonably good performance for most evalua-
tions; naive Bayes, RDP, and BLAST+ also delivered
reasonably low runtime requirements and outperform
UCLUST on most other evaluation metrics.
This study did not compare methods for classification

of shotgun metagenome sequencing data sets, which
present a series of unique challenges that do not exist
for marker-gene amplicon sequence data. These include
much higher unique sequence counts (making runtime a
greater priority) and different analysis and quality con-
trol protocols. Metagenome sequences also exhibit
heterogenous coverage and length, unlike marker-gene
amplicon sequences, which typically have uniform start
sites and read lengths within a single sequencing run. A
recent benchmark of metagenome taxonomic profiling
methods describes similar results to our benchmark of
marker-gene sequence classifiers: most profilers per-
form well from phylum to family level but performance
degrades at genus and species levels; different methods
display superior performance according to different
performance metrics; and parameter configuration dra-
matically impacts performance [26]. In the current study,
we focused on benchmarking and optimizing classifiers
for marker-gene amplicon sequence data, in light of the
distinct needs of metagenome and marker-gene sequence
datasets. Further testing is needed to assess the per-
formance of these methods for metagenome sequence
classification. Additional studies are also warranted to
compare the performance of metagenome sequence

classifiers for classification of marker-gene amplicon
sequences. The tax-credit evaluation framework could
facilitate this process, and we plan to continue to
develop q2-feature-classifier to integrate methods that
demonstrate superior performance for amplicon se-
quence classification.
We acknowledge several limitations to this study. First,

we compare the q2-feature-classifier methods to the
classifiers that have been most commonly used for clas-
sification of 16S rRNA and ITS marker-gene amplicon
sequences accessed through QIIME 1 (RDP, BLAST,
uclust, SortMeRNA). This study therefore focuses on
classification methods that are implemented either in
QIIME 1 or QIIME 2. We note that in many cases, QIIME
wraps other implementations of these methods, and our
results therefore should generalize beyond QIIME. Other
methods—including metagenome sequence classifiers—
deserve comparison. The tax-credit framework will
support ongoing methods optimizations and comparisons
to our foundational analysis by the microbiome research
community. Second, the simulated sequence reads cur-
rently used in tax-credit do not incorporate sequencing
errors, which limits their application for inferring clas-
sification performance under biological conditions. We
instead use mock communities to assay classification of
noisy sequence data and simulated data to assess idealized
performance (i.e., independent of sequence errors). Mock
communities also test actual experimental conditions
(encompassing PCR, sequencing, and other technical
biases that can be difficult to model), instead of attempt-
ing to simulate sequence errors, and hence we argue that
the use of multiple testing datasets (mock, simulated
cross-validated, and novel taxa simulations) is a strength
of our study that allows us to query different aspects of
classifier performance in isolation. However, this caveat—
that our sequence simulations do not contain simulated
errors—must be accounted for when interpreting those
results.

Conclusions
The classification methods provided in q2-feature-
classifier will support improved taxonomy classification
of marker-gene amplicon sequences, and are released
as a free, open-source plugin for use with QIIME 2. We
demonstrate that these methods perform as well as or
better than other leading taxonomy classification methods
on a number of performance metrics. The naive Bayes,
VSEARCH, and BLAST+ consensus classifiers described
here are released for the first time in QIIME 2, with opti-
mized “balanced” configurations (Table 2) set as defaults.
We also present the results of a benchmark of several

widely used taxonomy classifiers for marker-gene amplicon
sequences and recommend the top-performing methods
and configurations for the most common user scenarios.
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Our recommendations for “balanced” methods (Table 2)
will be appropriate for most users who are classifying 16S
rRNA gene or fungal ITS sequences, but other users may
prioritize high-precision (low false-positive) or high-recall
(low false-negative) methods.
We have also shown that great potential exists for

improving the accuracy of taxonomy classifications by
appropriately setting class weights for the machine
learning classifiers. Currently, no tools exist that allow
users to generate appropriate values for these class
weights in real applications. Compiling appropriate class
weights for different sample types could be a promising
approach to further improve taxonomic classification of
marker gene sequence reads.

Methods
Mock communities
All mock communities were sourced from mockrobiota
[14]. Raw fastq files were demultiplexed and processed
using tools available in QIIME 2 (version 2017.4)
(https://qiime2.org). Reads were demultiplexed with
q2-demux (https://github.com/qiime2/q2-demux) and
quality filtered and dereplicated with q2-dada2 [4]. Rep-
resentative sequence sets for each dada2 sequence vari-
ant were used for taxonomy classification with each
classification method.
The inclusion of multiple mock community samples is

important to avoid overfitting; optimizing method per-
formance to a small set of data could result in overfitting
to the specific community compositions or conditions
under which those data were generated, which reduces
the robustness of the classifier.

Cross-validated simulated reads
The simulated reads used here were derived from the
reference databases using the “Cross-validated classifica-
tion performance” notebooks in our project repository.
The reference databases were either Greengenes or
UNITE (99% OTUs) that were cleaned according to
taxonomic label to remove sequences with ambiguous or
null labels. Reference sequences were trimmed to simu-
late amplification using standard PCR primers and slice
out the first 250 bases downstream (3′) of the forward
primer. The bacterial primers used were 27F/1492R [27]
to simulate full-length 16S rRNA gene sequences,
515F/806R [28] to simulate 16S rRNA gene V4 domain se-
quences, and 27F/534R [29] to simulate 16S rRNA gene
V1–3 domain sequences; the fungal primers used were
BITSf/B58S3r [30] to simulate ITS1 internal transcribed
spacer DNA sequences. The exact sequences were used
for cross validation and were not altered to simulate any
sequencing error; thus, our benchmarks simulate denoised
sequence data [4] and isolate classifier performance from
impacts from sequencing errors. Each database was

stratified by taxonomy and 10-fold randomized cross-
validation data sets were generated using scikit-learn’s li-
brary functions. Where a taxonomic label had less than 10
instances, taxonomies were amalgamated to make suffi-
ciently large strata. If, as a result, a taxonomy in any test
set was not present in the corresponding training set, the
expected taxonomy label was truncated to the nearest
common taxonomic rank observed in the training set
(e.g., Lactobacillus casei would become Lactobacillus).
The notebook detailing simulated read generation (for
both cross-validated and novel taxon reads) prior to
taxonomy classification is available at https://github.
com/caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/
novel-taxa/dataset-generation.ipynb.
Classification performance was also slightly modified

from a standard machine-learning scenario as the classi-
fiers in this study are able to refuse classification if they
are not confident above a taxonomic level for a given
sample. This also accommodates the taxonomy truncation
that we performed for this test. The methodology was
consistent with that used below for novel taxon evalua-
tions, so we defer its description to the next section.

“Novel taxon” simulation analysis
“Novel taxon” classification analysis was performed to
test the performance of classifiers when assigning tax-
onomy to sequences that are not represented in a refer-
ence database, e.g., as a simulation of what occurs when
a method encounters an undocumented species [22–25].
In this analysis, simulated amplicons were filtered from
those used for the cross-validation analysis. For all se-
quences present in each test set, sequences sharing taxo-
nomic affiliation at a given taxonomic level L (e.g., to species
level) in the corresponding training set were removed. Taxa
are stratified among query and test sets such that for each
query taxonomy at level L, no reference sequences match
that taxonomy, but at least one reference sequence will
match the taxonomic lineage at level L-1 (e.g., same genus
but different species). An ideal classifier would assign tax-
onomy to the nearest common taxonomic lineage (e.g.,
genus), but would not “overclassify” [25] to near neighbors
(e.g., assign species-level taxonomy when species X is
removed from the reference database). For example, a
“novel” sequence representing the species Lactobacil-
lus brevis should be classified as “Lactobacillus,” without
species-level annotation, in order to be considered a true
positive in this analysis. As described above for cross-
validated reads, these novel taxa simulated communities
were also tested in both bacterial (B) and fungal (F) data-
bases on simulated amplicons trimmed to simulate 250-nt
sequencing reads.
Novel taxon classification performance is evaluated

using precision, recall, F-measure, overclassification rates,

Bokulich et al. Microbiome  (2018) 6:90 Page 12 of 17

https://qiime2.org
https://github.com/qiime2/q2-demux
https://github.com/caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/novel-taxa/dataset-generation.ipynb
https://github.com/caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/novel-taxa/dataset-generation.ipynb
https://github.com/caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/novel-taxa/dataset-generation.ipynb


underclassification rates, and misclassification rates [25]
for each taxonomic level (phylum to species), computed
with the following definitions (see below, Performance
analyses using simulated reads, for full description of pre-
cision, recall, and F-measure calculations):

1) A true positive is considered the nearest correct
lineage contained in the reference database. For
example, if Lactobacillus brevis is removed from the
reference database and used as a query sequence,
the only correct taxonomy classification would be
“Lactobacillus,” without species-level classification.

2) A false positive would be either a classification to a
different Lactobacillus species (overclassification) or
any genus other than Lactobacillus
(misclassification).

3) A false negative occurs if an expected taxonomy
classification (e.g., “Lactobacillus”) is not observed in
the results. Note that this will be the modified
taxonomy expected when using a naive reference
database and is not the same as the true taxonomic
affiliation of a query sequence in the novel taxa
analysis. A false negative results from misclassification,
overclassification, or when the classification contains
the correct basal lineage, but does not assign a
taxonomy label at level L (Underclassification),
e.g., classification as “Lactobacillaceae,” but no
genus level classification.

Taxonomy classification
Representative sequences for all analyses (mock com-
munity, cross-validated, and novel taxa) were classified
taxonomically using the following taxonomy classifiers
and setting sweeps:

1. q2-feature-classifier multinomial naive Bayes
classifier. Varied k-mer length in {4, 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 32} and confidence threshold in
{0, 0.5, 0.7, 0.9, 0.92, 0.94, 0.96, 0.98, 1}.

2. BLAST+ [9] local sequence alignment followed by
consensus taxonomy classification implemented in
q2-feature-classifier. Varied max accepts from 1 to
100; percent identity from 0.80 to 0.99; and minimum
consensus from 0.51 to 0.99. See description below.

3. VSEARCH [10] global sequence alignment followed
by consensus taxonomy classification implemented in
q2-feature-classifier. Varied max accepts from 1 to
100; percent identity from 0.80 to 0.99; and minimum
consensus from 0.51 to 0.99. See description below.

4. Ribosomal Database Project (RDP) naïve Bayesian
classifier [11] (QIIME1 wrapper), with confidence
thresholds between 0.0 and 1.0 in steps of 0.1.

5. Legacy BLAST [15] (QIIME1 wrapper) varying e-value
thresholds from 1e-9 to 1000.

6. SortMeRNA [13] (QIIME1 wrapper) varying
minimum consensus fraction from 0.51 to 0.99;
similarity from 0.8 to 0.9; max accepts from 1 to 10;
and coverage from 0.8 to 0.9.

7. UCLUST [12] (QIIME1 wrapper) varying minimum
consensus fraction from 0.51 to 0.99; similarity
from 0.8 to 0.9; and max accepts from 1 to 10.

With the exception of the UCLUST classifier, we have
only benchmarked the performance of open-source, free,
marker-gene-agnostic classifiers, i.e., those that can be
trained/aligned on a reference database of any marker
gene. Hence, we excluded classifiers that can only assign
taxonomy to a particular marker gene (e.g., only bacter-
ial 16S rRNA genes) and those that rely on specialized
or unavailable reference databases and cannot be trained
on other databases, effectively restricting their use for
other marker genes and custom databases.
Classification of bacterial/archaeal 16S rRNA gene

sequences was made using the Greengenes (13_8 release)
[5] reference sequence database preclustered at 99% ID,
with amplicons for the domain of interest extracted using
primers 27F/1492R [27], 515F/806R [28], or 27F/534R [29]
with q2-feature-classifier’s extract_reads method. Classifi-
cation of fungal ITS sequences was made using the UNITE
database (version 7.1 QIIME developer release) [31]
preclustered at 99% ID. For the cross validation and
novel taxon classification tests, we prefiltered to remove se-
quences with incomplete or ambiguous taxonomies (con-
taining the substrings ‘unknown,’ ‘unidentified,’ or ‘_sp’ or
terminating at any level with ‘__’).
The notebooks detailing taxonomy classification sweeps

of mock communities are available at https://github.
com/caporaso-lab/tax-credit-data/tree/0.1.0/ipynb/mock-
community. Cross-validated read classification sweeps
are available at https://github.com/caporaso-lab/tax-credit-
data/blob/0.1.0/ipynb/cross-validated/taxonomy-assignment.
ipynb. Novel taxon classification sweeps are available at
https://github.com/caporaso-lab/tax-credit-data/blob/0.1.0/
ipynb/novel-taxa/taxonomy-assignment.ipynb.

Runtime analyses
The tax-credit framework employs two different runtime
metrics: as a function of (1) the number of query se-
quences or (2) the number of reference sequences. Tax-
onomy classifier runtimes were logged while performing
classifications of pseudorandom subsets of 1, 2000, 4000,
6000, 8000, and 10,000 sequences from the Greengenes
99% OTU database. Each subset was drawn once then
used for all of the tests as appropriate. All runtimes were
computed on the same Linux workstation (Ubuntu 16.04.2
LTS, Intel Xeon CPU E7–4850 v3 @ 2.20GHz, 1TB
memory). The exact commands used for runtime ana-
lysis are presented in the “Runtime analyses” notebook
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in the project repository (https://github.com/caporaso-lab/
tax-credit-data/blob/0.1.0/ipynb/runtime/analysis.ipynb).

Performance analyses using simulated reads
Cross-validated and novel taxa reads are evaluated using
the classic precision, recall, and F-measure metrics [5]
(novel taxa use the standard calculations as described
below, but modified definitions for true positive (TP),
false positive (FP), and false negative (FN), as described
above for novel taxon classification analysis).
Precision, recall, and F-measure are calculated as follows:

� Precision = TP/(TP + FP) or the fraction of sequences
that were classified correctly at level L.

� Recall = TP/(TP + FN) or the fraction of expected
taxonomic labels that were predicted at level L.

� F-measure = 2 × precision × recall/(precision+recall),
or the harmonic mean of precision and recall.

The Jupyter notebook detailing commands used for
evaluation of cross-validated read classifications is available
at https://github.com/caporaso-lab/tax-credit-data/blob/
0.1.0/ipynb/cross-validated/evaluate-classification.ipynb.
The notebook for evaluation of novel taxon classifications
is available at https://github.com/caporaso-lab/tax-credit-
data/blob/0.1.0/ipynb/novel-taxa/evaluate-classification.ipynb.

Performance analyses using mock communities
The Jupyter notebook detailing commands used for evalu-
ation of mock communities, including the three evalu-
ation types described below, is available at https://github.
com/caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/mock-
community/evaluate-classification-accuracy.ipynb.

Precision and recall
Classic precision, recall, and F-measure are used to cal-
culate mock community classification accuracy, using
the definitions given above for simulated reads. These
metrics require knowing the expected classification of
each sequence, which we determine by performing a
gapless alignment between each representative sequence
in the mock community and the marker-gene sequences
of each microbial strain added to the mock community.
These “expected sequences” are provided for the mock
communities in mockrobiota [14]. Representative se-
quences are assigned the taxonomy of the best alignment,
and any representative sequence with more than three
mismatches to the expected sequences are excluded from
precision/recall calculations. If a representative sequence
aligns to more than one expected sequence equally well,
all top hits are accepted as the “correct” classification.
This scenario is rare and typically only occurred when
different strains of the same species were added to the
same mock community to intentionally produce this

challenge (e.g., for mock-12 as described by [4]). Preci-
sion, recall, and F-measure are then calculated by
comparing the “expected” classification for each mock
community sequence to the classifications predicted by
each taxonomy classifier using the full reference data-
bases, as described above.

Taxon accuracy rate and taxon detection rate
Taxon accuracy rate (TAR) and taxon detection rate
(TDR) are used for qualitative compositional analyses of
mock communities. As the true taxonomy labels for
each sequence in a mock community are not known
with absolute certainty, TAR and TDR are useful alter-
natives to precision and recall that instead rely on the
presence/absence of expected taxa, or microbiota that
are intentionally added to the mock community. In prac-
tice, TAR/TDR are complementary metrics to precision/
recall and should provide similar results if the expected
classifications for mock community representative se-
quences are accurate.
At a given taxonomic level, a classification is a

� True positive (TP), if that taxon is both observed
and expected.

� False positive (FP), if that taxon is observed but not
expected.

� False negative (FN), if a taxon is expected but not
observed.

These are used to calculate TAR and TDR as

� TAR = TP/(TP + FP) or the fraction of observed
taxa that were expected at level L.

� TDR = TP/(TP + FN) or the fraction of expected
taxa that are observed at level L.

Bray-Curtis dissimilarity
Bray-Curtis dissimilarity [32] is used to measure the de-
gree of dissimilarity between two samples as a function
of the abundance of each species label present in each
sample, treating each species as equally related. This is a
useful metric for evaluating classifier performance by
assessing the relative distance between each predicted
mock community composition (abundance of taxa in a
sample based on results of a single classifier) and the ex-
pected composition of that sample. For each classifier,
Bray-Curtis distances between the expected and ob-
served taxonomic compositions are calculated for each
sample in each mock community dataset; this yields a
single expected-observed distance for each individual
observation. The distance distributions for each method
are then compared statistically using paired or unpaired
t-tests to assess whether one method (or configuration)
performs consistently better than another.
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New taxonomy classifiers
We describe q2-feature-classifier (https://github.com/qiime2/
q2-feature-classifier), a plugin for QIIME 2 (https://qiime2.
org/) that performs multi-class taxonomy classification of
marker-gene sequence reads. In this work, we compare
the consensus BLAST+ and VSEARCH methods and the
naive Bayes scikit-learn classifier. The software is free and
open-source.

Machine learning taxonomy classifiers
The q2-feature-classifier plugin allows users to apply
any of the suite of machine learning classifiers available
in scikit-learn (http://scikit-learn.org) to the problem of
taxonomy classification of marker-gene sequences. It
functions as a lightweight wrapper that transforms the
problem into a standard document classification prob-
lem. Advanced users can input any appropriate scikit-
learn classifier pipeline, which can include a range of
feature extraction and transformation steps as well as
specifying a machine learning algorithm.
The plugin provides a default method which is to ex-

tract k-mer counts from reference sequences and train
the scikit-learn multinomial naive Bayes classifier, and it
is this method that we test extensively here. Specifically,
the pipeline consists of a sklearn.feature_extraction.text.
HashingVectorizer feature extraction step followed by a
sklearn.naive_bayes.MultinomialNB classification step. The
use of a hashing feature extractor allows the use of signifi-
cantly longer k-mers than the 8-mers that are used by RDP
Classifier, and we tested up to 32-mers. Like most scikit-
learn classifiers, we are able to set class weights when train-
ing the multinomial naive Bayes classifiers. In the naive
Bayes setting, setting class weights means that class priors
are not derived from the training data or set to be uniform,
as they are for the RDP Classifier. For more details on how
class weights enter the calculations, please refer to the
scikit-learn User Guide (http://scikit-learn.org).
In most settings, it is highly unlikely that the assump-

tion of uniform weights is correct. That assumption is
that each of the taxa in the reference database is equally
likely to appear in each sample. Setting class weights to
more realistic values can greatly aid the classifier in mak-
ing more accurate predictions, as we show in this work.
When testing the mock communities, we made use of the
fact that the sequence compositions were known a priori
for the bespoke classifier. For the simulated reads studies,
we allowed the classifier to set the class weights from the
class frequencies observed in each training set for the be-
spoke classifier.
For this study, we performed two parameter sweeps

on the mock communities: an initial broad sweep to
optimize feature extraction parameters and then a more
focused sweep to optimize k-mer length and confidence
parameter settings. These sweeps included varying the

assumptions regarding class weights. The focused
sweeps were also performed for the cross-validated
and novel taxa evaluations, but only for the assumption of
uniform class priors. The results for the focused sweeps
across all data sets are those which are compared against
the other classifiers in this work.
The broad sweeps used a modified scikit-learn pipeline

which consisted of the sklearn.feature_extraction.text.
HashingVectorizer followed by the sklearn.feature_
extraction.text.TfidfTransformer, then the sklearn.
naive_bayes.MultinomialNB. We performed a full grid
search over the parameters shown in Table 3. The
conclusion from the initial sweep was that the Tfidf-
Transformer step did not significantly improve classi-
fication that n_features should be set to 8192, that feature
vectors should be normalized using L2 normalization, and
that the alpha parameter for the naive Bayes classifier
should be set to 0.001. Please see https://github.com/
caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/mock-
community/evaluate-classification-accuracy-nb-extra.
ipynb for details.

Consensus taxonomy alignment-based classifiers
Two new classifiers implemented in q2-feature-classifier
perform consensus taxonomy classification based on
alignment of a query sequence to a reference sequence.
The methods classify_consensus_vsearch and
classify_consensus_blast use the global aligner
VSEARCH [10] or the local aligner BLAST+ [9], respect-
ively, to return up to maxaccepts reference sequences
that align to the query with at least perc_identity
similarity. A consensus taxonomy is then assigned to the
query sequence by determining the taxonomic lineage on
which at least min_consensus of the aligned sequences
agree. This consensus taxonomy is truncated at the taxo-
nomic level at which less than min_consensus of tax-
onomies agree. For example, if a query sequence is
classified with maxaccepts=3, min_consensus=0.51,
and the following top hits:

Table 3 Naive Bayes broad grid search parameters

Step Parameter Values

sklearn.feature_extraction.text.
HashingVectorizer

n_features 1024, 8192, 65,536

ngram_range [4,4], [8, 8], [16, 16],
[4,16]

sklearn.feature_extraction.text.
TfidfTransformer

norm l1, l2, None

usd_idf True, False

sklearn.naive_bayes.MultinomialNB alpha 0.001, 0.01, 0.1

class_prior None, array of
class weights

post processing confidence 0, 0.2, 0.4, 0.6, 0.8
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k__Bacteria; p__Firmicutes; c__Bacilli;
o__Lactobacillales; f__Lactobacillaceae;
g__Lactobacillus; s__brevis.
k__Bacteria; p__Firmicutes; c__Bacilli;

o__Lactobacillales; f__Lactobacillaceae;
g__Lactobacillus; s__brevis.
k__Bacteria; p__Firmicutes; c__Bacilli;

o__Lactobacillales; f__Lactobacillaceae;
g__Lactobacillus; s__delbrueckii.
The taxonomy label assigned will be k__Bacteria;

p__Firmicutes; c__Bacilli; o__Lactobacil-
lales; f__Lactobacillaceae; g__Lactobacil-
lus; s__brevis. However, if min_consensus=0.99,
the taxonomy label assigned will be k__Bacteria, p__
Firmicutes, c__Bacilli, o__Lactobacillales,
f__Lactobacillaceae, and g__Lactobacillus.
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